JUKI-C400 Series Intel ULV Celeron Processor With Ethernet , USB 2.0 , Audio Embedded Board

User Manual

Version 1.1

September 1, 2004

[©] Copyright 2004 by ICP Electronics Inc. All Rights Reserved.

The information in this document is subject to change without prior notice in order to improve reliability, design and function and does not represent a commitment on the part of the manufacturer.

In no event will the manufacturer be liable for direct, indirect, special, incidental, or consequential damages arising out of the use or inability to use the product or documentation, even if advised of the possibility of such damages.

This document contains proprietary information protected by copyright. All rights are reserved. No part of this manual may be reproduced by any mechanical, electronic, or other means in any form without prior written permission of the manufacturer.

Trademarks

JUKI-C400 is registered trademarks of ICP Electronics Inc.; IBM PC is a registered trademark of International Business Machines Corporation. VIA is a registered trademark of VIA Corporation. AMI is registered trademarks of American Megatrends Inc., Other product names mentioned herein are used for identification purposes only and may be trademarks and/or registered trademarks of their respective companies.

Table of Contents

CHAI	PTER 1 INTRODUCTION	5
1.1	SPECIFICATIONS	6
1.2	PACKAGE OF CONTENTS	8
CHAI	PTER 2 INSTALLATION	9
2.1	LAYOUT	9
2.2	DIMENSION DIAGRAM (UNIT: MM)	
2.3	UNPACKING PRECAUTIONS	
2.4	CLEAR CMOS SETUP	
2.5	BUZZER FUNCTION SETTING	
2.6	COM2 RS-232 /422/485 MODE SETTING	
2.7	TFT LCD SETTING	
2.8	COM2 RI FUNCTION SETTING	
2.9	COMPACT FLASH MASTER/SLAVE FUNCTION SETTING	14
CHAI	PTER 3 CONNECTION	15
3.1	AUDIO CONNECTORS	15
3.2	IDE DISK DRIVE CONNECTOR	16
3.3	PARALLEL PORT	
3.4	LVDS LCD Inverter Connector	
3.5	USB PORT CONNECTORS	
3.6	SERIAL PORTS	
3.7	KEYBOARD/MOUSE CONNECTOR	
3.8	IRDA INFRARED INTERFACE PORT	
3.9	FAN CONNECTOR	
3.10	VGA CONNECTOR	
3.11	DIGITAL I/O CONNECTOR	
3.12	EXTERNAL SWITCHES AND INDICATORS	
3.13	PS-ON CONNECTOR	
3.14	LAN RJ45 CONNECTOR	
3.15	TFT LCD CONNECTOR	
3.16 3.17	LVDS LCD CONNECTOR	
3.17	FLOPPY CONNECTOR	
3.10	COMPACT FLASH STORAGE CARD SOCKET	
J. I /		20

CHAP	PTER 4 AMI BIOS SETUP	30
4.1	GETTING START	30
4.2	STARTING SETUP	30
4.3	USING SETUP	31
4.4	GETTING HELP	32
4.5	MAIN MENU	33
4.6	STANDARD CMOS SETUP	35
4.7	ADVANCED CMOS SETUP	
4.8	ADVANCED CHIPSET SETUP	42
4.9	POWER MANAGEMENT SETUP	
4.10	PCI / PLUG AND PLAY SETUP	
4.11	PERIPHERAL SETUP	48
4.12	HARDWARE MONITOR SETUP	50
4.13	CHANGE SUPERVISOR PASSWORD	50

Chapter 1 Introduction

Welcome to the JUKI-C400 board, which comes equipped with a low power consumption and high performance INTEL ULV C400 processor. It is designed for the system manufacturers, integrators, or VARs that want to provide all the performance, reliability, and quality at a reasonable price.

In addition, JUKI-C400 built-in the ProSavage4 AGP4X VGA controller. It is a 2D/3D graphics controller, which provides resolution up to 1920X1440, and supports both CRT and LCD simultaneously. The VGA controller can share $8\sim32MB$ frame buffer of system memory.

For the application that needs high speed serial transmission, JUKI-C400 provides both the USB1.1 and USB2.0 for your choice. The high speed USB2.0 host controller implements an ECHI interface that provides 480Mb/s bandwidth.

Both on-chip UARTs are compatible with the NS16C550. The parallel port and IDE interface are compatible with IBM PC/AT architecture.

JUKI-C400 built-in 10/100 Fast Ethernet LAN. It is a fully integrated 10BASE-T/100BASE-TX LAN controller with high performance and low power features.

JUKI-C400 uses the advanced VIA VT8606/VT82C686B Chipsets which is 100% software compatible chipset with PCI 2.2 standard.

1.1 Specifications

CPU	INTEL ULV Celeron processor ,supports 100 MHz FSB
Bus interface	PCI/ISA bus
Bus speed	ISA: 8MHz, PCI: 33MHz
DMA channels	7
Interrupt levels	15
Chipset	VT8606
Real-time clock/calendar	VT82C686B
Main memory	One 144-pin DIMM socket supports 133Mhz SDRAM . The max. memory is up to 512MB.
Ultra DMA 100 IDE interface	Up to four PCI Enhanced IDE hard drives are supported. The Ultra DMA 100 IDE can handle data transfer up to 100MB/s. Compatible with existing ATA IDE specifications is best advantage, so there is no need to do any changes for users' current accessories.
Floppy disk drive interface	Supports up to two floppy disk drives, 5.25" (360KB and 1.2MB) and/or 3.5" (720KB, 1.44MB, and 2.88MB)
Serial ports	Four RS-232 ports with 16C550 UART (or compatible) with 16-byte FIFO buffer. Support up to 115.2Kbps. Ports can be individually configured to COM1, COM2, COM3, COM4 or disabled.
Bi-directional parallel port	Configurable to LPT1 or disabled. Supports EPP/ECP/SPP
Hardware monitor	Built-in to monitor power supply voltage and fan speed status

IrDA port	Supports Serial Infrared(SIR) and Amplitude Shift Keyed IR(ASKIR) interface		
USB 2.0/1.1 port	Support 3 USB2.0 and 2 USB1.1 ports for future expansion		
Watchdog timer	Software Programmable, reset generated when watchdog timer is time-out. You can use I/O Port hex 043(843) & 443 to control the watchdog.		
VGA controller	Built-in ProSavage4 AGP4X 256-bit 2D/3D graphics engine. 8~32MB share Memory. Screen Resolution: up to 1920x1440.		
Ethernet	Fast Ethernet controllers, IEEE 802.3u Auto-Negotiation supports 10BASE- T/100BASE-TX standard. The RJ45 connectors are located on the mounting bracket for easy connection.		
Keyboard and PS/2 mouse connector	A 6-pin mini DIN connector is located on the mounting bracket for easy connection to a keyboard or PS/2 mouse. For alternative application, a keyboard and a PS/2 mouse pin header connector are also available on board.		
Audio	AC'97 Audio CODEC		
Compactflash	It can be used with a passive adapter (True IDE Mode) in a Type I/II Socket.		
Expansion bus	PC/104 compatible		
Power consumption	(INTEL C400 400Mhz, PC133 SDRAM) +5V @2.8A ,+12V @ 500mA Recommended: 250-watt power supply or higher		
Operating temperature	0° ~ 60° C		

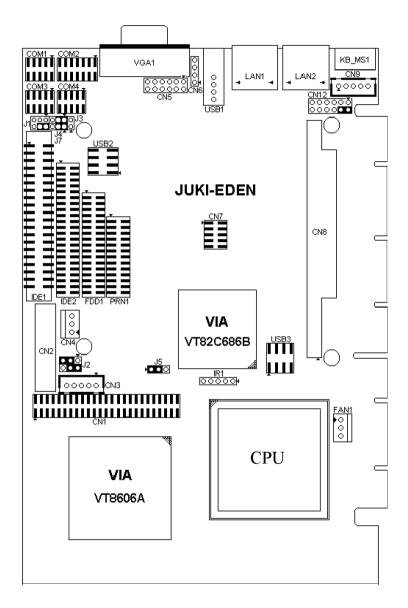
1.2 Package of Contents

JUKI-C400 package includes the following items:

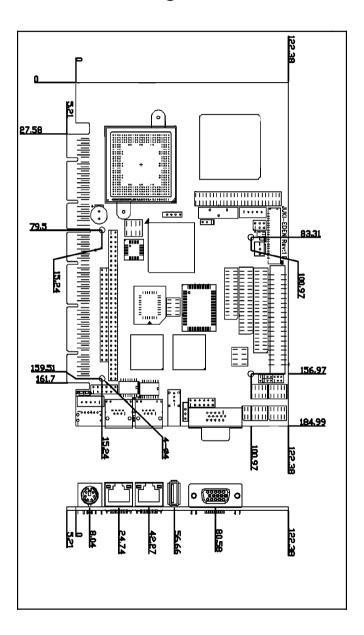
- JUKI-C400 Main Board
- Two RS-232 cables
- One Parallel port cable
- One FDD cable
- Two ATA IDE cables
- One Audio cable
- Keyboard and mouse Y-Adapter cable
- One Companion-CD

NOTES: If any of these items are missing or damaged, contact the dealer from whom you purchased this product.

Save the shipping materials and carton in case you want to ship or store the product in the future.


Chapter 2 Installation

This chapter describes how to install the JUKI-C400. The layout diagram of JUKI-C400 is shown on the next page and the Unpacking Precautions that you should be careful with is described on the following page. Also included is the jumpers and switches setting for this board's configuration, such as: CPU type selection, system clock setting and Watchdog timer.


2.1 Layout

< Please, refer to next page >

Layout (JUKI-C400 Series)

2.2 Dimension Diagram (Unit: mm)

2.3 Unpacking Precautions

Some components on JUKI-C400's are very sensitive to static electric charges and can be damaged by a sudden rush of power. To protect it from unintended damage, be sure to follow these precautions:

- ✓ Ground yourself to remove any static charge before touching your JUKI-C400 SBC. You can do it by using a grounded wrist strap at all times or by frequently touching any conducting materials that is connected to the ground.
- ✓ Handle your JUKI-C400 SBC by its edges. Don't touch IC chips, leads or circuitry if not necessary.
- ✓ Do not plug any connector or jumper while the power is on.

2.4 Clear CMOS Setup

To clear the CMOS Setup (for example, if you have forgotten the password, you should clear the CMOS and then re-set the password), you have to close the J5 (2-3) for about 3 seconds, then open it. This will put the system back to normal operation mode.

• J5 : Clear CMOS Setup

J5	DESCRIPTION
1-2	Keep CMOS Setup
(default)*	(Normal Operation)
Short 2-3	Clear CMOS Setup

2.5 Buzzer Function Setting

CN12(2-4): Enabled/DisabledOnboard Buzzer Function

2 - 4	DESCRIPTION	
SHORT *	Enabled	
OPEN	Disabled	

2.6 COM2 RS-232 /422/485 Mode Setting

• J4: COM2-RS232 or RS422/485 Mode Setting

J4	DESCRIPTION
1-2 Short	RS232
2-3 Short	RS422/485

. J7: COM2-RS422 or RS485 Mode Setting

J7	DESCRIPTION
1-2 Short	RS422
2-3 Short	RS485

Caution: If RS422/485 is in use, the RS232 mode on the main board will be disabled.

2.7 TFT LCD Setting

. J2:TFT LCD type(5V/3V & FPCLK/ #FPCLK) Setting

J2	DESCRIPTION	
2 - 4	3V TFT LCD	
3 - 5	FPCLK	
4 - 6	5V TFT LCD	
1 - 3	#FPCLK	

2.8 COM2 RI Function Setting

J1: RI Function Setting

Short 2 - 4 pin, normal RS232 RI Function

Short 4 - 6, 1 - 3 pin, RI is 5V output

Short 4 - 6, 3 - 5 pin, RI is 12V output

J1	DESCRIPTION	
2 - 4	Normal RI Function	
1 - 3 4 - 6	RI is 5Voltage output	
3 - 5 4 - 6	RI is 12Voltage output	

2.9 Compact Flash Master/Slave Function Setting

J3 : Compact Flash Master/Slave Function Setting

Short 1 - 2 pin , Compact Flash is Master

J3	DESCRIPTION	
Close	Master	
Open	Slave	

Chapter 3 Connection

This chapter describes how to connect peripherals, switches and indicators to the JUKI-C400 board.

3.1 Audio Connectors

The onboard AC'97 CODEC supports several audio functions. The audio connectors are described below.

CN5 : Audio connector

PIN	DESCRIPTION	PIN	DESCRIPTION
1	NC	2	NC
3	GROUND	4	GROUND
5	Line Out (Left)	6	Line Out (Right)
7	Line In (Left)	8	Line In (Right)
9	GROUND	10	GROUND
11	MIC In	12	GROUND

• CN6: Audio CD In connector

PIN	DESCRIPTION
1	CD SIGNAL (LEFT)
2	GROUND
3	GROUND
4	CD SIGNAL (RIGHT)

3.2 IDE Disk Drive Connector

You can attach up to four IDE (Integrated Device Electronics) devices.

• IDE1: Primary IDE Connector (40pin, 2.54mm)

• IDE2: Secondary IDE Connector (44pin, 2.0mm)

IDE1 & IDE2 : IDE Interface Connector

PIN	DESCRIPTION	PIN	DESCRIPTION
1	RESET#	2	GROUND
3	DATA 7	4	DATA 8
5	DATA 6	6	DATA 9
7	DATA 5	8	DATA 10
9	DATA 4	10	DATA 11
11	DATA 3	12	DATA 12
13	DATA 2	14	DATA 13
15	DATA 1	16	DATA 14
17	DATA 0	18	DATA 15
19	GROUND	20	N/C
21	DRQ	22	GROUND
23	IOW#	24	GROUND
25	IOR#	26	GROUND
27	CHRDY	28	REV. PULL LOW
29	DACK	30	GROUND-DEFAULT
31	INTERRUPT	32	N/C
33	SA1	34	N/C
35	SA0	36	SA2
37	HDC CS0#	38	HDC CS1#
39	HDD ACTIVE#	40	GROUND
41	+5V(IDE2)	42	+5V(IDE2)
43	GND(IDE2)	44	N/C(IDE2)

3.3 Parallel Port

This port is usually connected to a printer, The JUKI-C400 includes an on-board parallel port, accessed through a 26-pin flat-cable connector PRN1. The detailed pin assignment of the connector is specified as following table:

PRN1 : Parallel Port Connector

PIN	DESCRIPTION	PIN	DESCRIPTION
1	STROBE#	2	DATA 0
3	DATA 1	4	DATA 2
5	DATA 3	6	DATA 4
7	DATA 5	8	DATA 6
9	DATA 7	10	ACKNOWLEDGE
11	BUSY	12	PAPER EMPTY
13	PRINTER	14	AUTO FORM FEED #
	SELECT		
15	ERROR#	16 INITIALIZE	
17	PRINTER	18	GROUND
	SELECT LN#		
19	GROUND	20	GROUND
21	GROUND	22	GROUND
23	GROUND	24	GROUND
25	GROUND	26	NC

3.4 LVDS LCD Inverter Connector

JUKI-C400 is equipped with LVDS controllers, which can be connected to the LVDS LCD Inverter via CN3 connector. The detailed pin assignment of CN3 connector are as follows table:

CN3: LVDS Panel Inverter Connector

PIN	DESCRIPTION
1	NC
2	GROUND
3	+12V
4	GROUND
5	ENVEE

3.5 USB Port Connectors

JUKI-C400 is equipped with two USB 2.0 ports, high bandwidth (480Mbps) and is backward compatible with USB1.1. The detailed pin assignment of the connectors are specified as following tables:

• USB1: USB 2.0 Connector (1st port)

PIN	PIN DESCRIPTION		DESCRIPTION
1.	VCC	3.	DATA0+
2.	DATA0-	4.	GROUOND

• USB2: USB 2.0 Connector (2nd port)

PIN DESCRIPTION		PIN	DESCRIPTION
1.	VCC	8.	GROUND
2.	DATA0-	7.	DATA1+
3.	DATA0+	6.	DATA1-
4.	GROUND	5.	VCC

JUKI-C400 is also equipped with two USB 1.1 ports.

• USB3: USB 1.1 Connector (2 ports)

PIN DESCRIPTION		PIN	DESCRIPTION
1.	VCC	8.	GROUND
2.	DATA0-	7.	DATA1+
3.	DATA0+	6.	DATA1-
4.	GROUND	5.	VCC

3.6 Serial Ports

The JUKI-C400 offers four high speed NS16C550 compatible UARTs with Read/Receive 16 byte FIFO serial ports. The detailed pin assignment of the connectors are specified as following tables:

• COM1, COM3, COM4: Serial Port Connector

PIN	DESCRIPTION
1	DATA CARRIER DETECT (DCD)
2	RECEIVE DATA (RXD)
3	TRANSMIT DATA (TXD)
4	DATA TERMINAL READY (DTR)
5	GROUND (GND)
6	DATA SET READY (DSR)
7	REQUEST TO SEND (RTS)
8	CLEAR TO SEND (CTS)
9	RING INDICATOR (RI)

COM2:Serial Port Connector(14-pin Header)

PIN	DESCRIPTION	PIN	DESCRIPTION
1	(DCD)	8	(DSR)
2	(RXD)	9	(RTS)
3	(TXD)	10	(CTS)
4	(DTR)	11	(RI)
5	ROUND	12	NC
6	TX2+	13	TX2-
7	RX2+	14	RX2-

NOTE: TX2+,TX2- and RX2+,RX2- are for transmitting and receiving, respectively, in the RS-422 connection. While in RS-485 connection, TX2+,RX2+ and TX2-,RX2- must be twisted each. Any how, you can only choose to use RS-232 or RS-422/485.

3.7 Keyboard/Mouse Connector

The JUKI-C400 provides a 6-pin DIN keyboard/mouse connector (KB_MS1) and a 5-pin keyboard connector (CN9).

KB_MS1:Mini DIN Keyboard/Mouse Connector

PIN	DESCRIPTION
1	KEYBOARD DATA
2	MOUSE DATA
3	GROUND
4	+5V
5	KEYBOARD CLOCK
6	MOUSE CLOCK

. CN9: 5-pin Keyboard/Mouse Connector

PIN	DESCRIPTION
1	KEYBOARD CLOCK
2	KEYBOARD DATA
3	NC
4	GROUND
5	+5V

3.8 IrDA Infrared Interface Port

JUKI-C400 comes with an integrated IrDA port which supports either a Serial Infrared(SIR) or an Amplitude Shift Keyed IR(ASKIR) interface. The detailed pin assignment of the connector are specified as following table:

. IR1: IrDA connector

PIN	DESCRIPTION
1	+5V
2	NC
3	IR-RX
4	Ground
5	IR-TX

3.9 Fan Connector

JUKI-C400 also contains a CPU cooling fan connector, which can supply 12V/500mA to the fan. There is a "rotation" pin in the fan connector, which transfers the fan's rotation signal to the system BIOS in order to recognize the fan speed. Please note that only specific fans offer a rotation signal. The detailed pin assignment of the connector are specified as following table:

. FAN1: CPU Fan Connector

PIN	DESCRIPTION	
1	Rotation Signal	
2	+12V	
3	Ground	

3.10 VGA Connector

. VGA1: 15-VGA Connector(D-SUB)

PIN	DESCRIPTION	PIN	DESCRIPTION
1	RED	2	GREEN
3	BLUE	4	NC
5	GROUND	6	GROUND
7	GROUND	8	GROUND
9	NC	10	GROUND
11	NC	12	DDCDAT
13	HSYNC	14	VSYNC
15	DDCCLK		

3.11 Digital I/O Connector

The digital I/O port of JUKI-C400 is 5V CMOS level. Internal pull-up are existed on the output.

. CN7: 10-pin Digital I/O Connector

PIN	DESCRIPTION	PIN	DESCRIPTION
1	GROUND	2	+5V
3	INPUT1	4	OUTPUT1
5	INPUT2	6	OUTPUT2
7	INPUT3	8	OUTPUT3
9	INPUT4	10	OUTPUT4

3.12 External Switches and Indicators

There are many external switches and indicators for monitoring and controlling your CPU board. All functions are included CN12 connector. The detailed pin assignment of CN12 connector is specified as following table:

• CN12: Pin Assignment and Functions

FUNCTION	PIN	DESCRIPTION		
SPEAKER	2	SPK	Jump for Buzzer	
		SIGNAL		
	4	Buzzer-		
	6		NC	
	8		VCC	
RESET	10	F	RESET	
	12	GROUND		
HDD LED	9	IDE_LED+		
	11	IDE_LED-		
POWER LED	1	LED+		
	3	LED-(GROUND)		
POWER BUTTON	5	GROUND		
	7		PSON	

3.13 PS-ON Connector

This connector is used to control the ATX power supply.

CN4: PS-ON Connector (refer to Appendix F for details)

PIN	DESCRIPTION
1	+5V Standby
2	PS-ON
3	Ground

3.14 LAN RJ45 Connector

JUKI-C400 is equipped with 10/100Mbps Ethernet controllers, which are connected to the LAN via an RJ45 connector. The pin assignment of connectors is are as follow table:

LAN1,LAN2: RJ45 Connectors (10/100M)

PIN	DESCRIPTION	PIN	DESCRIPTION
1	TX+	7	N/C
2	TX-	8	N/C
3	RX+	9	Speed +
4	N/C	10	Speed -
5	N/C	11	Active/LINK +
6	RX-	12	Active/LINK -

3.15 TFT LCD Connector

JUKI-C400 is equipped with TFT LCD controller, which can be connected to the LCD via CN1 connector. The pin assignments are as follow table:

• CN1: TFT LCD Connector

PIN	DESCRIPTION	PIN	DESCRIPTION
1	N/C	2	FP33
3	FP34	4	FP31
5	FP35	6	FP32
7	FP30	8	FP28
9	FP29	10	FP27
11	FP25	12	FP26
13	FP24	14	FP21
15	FP23	16	FP22
17	FP16	18	FP20
19	FP17	20	FP18
21	FP19	22	FP14

• CN1: TFT LCD Connector

PIN	DESCRIPTION	PIN	DESCRIPTION
23	FP13	24	FP12
25	FP15	26	FP11
27	FP7	28	FP10
29	+LCD	30	+LCD
31	FP9	32	FP8
33	FP4	34	FP6
35	FP3	36	FP5
37	FP2	38	FP1
39	FPDEN	40	FP0
41	FPCLK	42	VEEON
43	ENVDD	44	FPVS
45	ENVEE	46	FPHS
47	GND	48	GND
49	+12V	50	+12V

3.16 LVDS LCD Connector

JUKI-C400 can support 1 or 2 channel (18 or 36bit) LVDS panel, which can be connected to CN2. The pin assignments are as follows.

• CN2: LVDS LCD Connector

PIN	DESCRIPTION	PIN	DESCRIPTION
1	2 nd LVDS clock output +	2	2nd LVDS clock output -
3	2 nd LVDS data2 output +	4	2nd LVDS data2 output -
5	2 nd LVDS data1 output +	6	2nd LVDS data1 output -
7	2 nd LVDS data0 output +	8	2nd LVDS data0 output -
9	1st LVDS clock output +	10	1st LVDS clock output -
11	1st LVDS data2 output +	12	1st LVDS data2 output -
13	1st LVDS data1 output +	14	1st LVDS data1 output -
15	1st LVDS data0 output +	16	1st LVDS data0 output -
17	GROUND	18	GROUND
19	+LCD	20	+LCD
	(+3Vor +5V)		(+3Vor +5V)

NOTE:Please refer to Appendix E for the signal mapping of LVDS

3.17 PC/104 Connection Bus

The detailed pin assignment of CN8 connector is specified as following table:

• CN8: PC/104 Connector (104-pin ISA bus)

PIN	DESCRIPTION	PIN	DESCRIPTION
A1	IOCHK-	B1	GND
A2	SD7	B2	RSTDRV
A3	SD6	В3	+5V
A4	SD5	B4	IRQ9
A5	SD4	B5	NC
A6	SD3	B6	DREQ2
A7	SD2	B7	NC
A8	SD1	B8	ZWS-
A9	SD0	B9	+12V
A10	IOCHRDY	B10	GND
A11	AEN	B11	SMEMW-
A12	SA19	B12	SMEMR-
A13	SA18	B13	IOW-
A14	SA17	B14	IOR-
A15	SA16	B15	DACK3-
A16	SA15	B16	DREQ3
A17	SA14	B17	DACK1-
A18	SA13	B18	DREQ1
A19	SA12	B19	REFRESH-
A20	SA11	B20	ISACLK
A21	SA10	B21	IRQ7
A22	SA9	B22	IRQ6
A23	SA8	B23	IRQ5
A24	SA7	B24	IRQ4
A25	SA6	B25	IRQ3
A26	SA5	B26	DACK2-
A27	SA4	B27	TC
A28	SA3	B28	BALE
A29	SA2	B29	+5V
A30	SA1	B30	ISA_OSC
A31	SA0	B31	GND
A32	GND	B32	GND

• CN8: PC/104 Connector (104-pin ISA bus)

PIN	DESCRIPTION	PIN	DESCRIPTION
C1	GND	D1	GND
C2	SBHE-	D2	MCS16-
C3	SA23	D3	IOCS16-
C4	SA22	D4	IRQ10
C5	SA21	D5	IRQ11
C6	SA20	D6	IRQ12
C7	SA19	D7	IRQ15
C8	SA18	D8	IRQ14
C9	SA17	D9	DACK0-
C10	MEMR-	D10	DREQ0
C11	MEMW-	D11	DACK5-
C12	SD8	D12	DRREQ5
C13	SD9	D13	DACK6-
C14	SD10	D14	DREQ6
C15	SD11	D15	DACK7-
C16	SD12	D16	DREQ7
C17	SD13	D17	+5V
C18	SD14	D18	MASTER-
C19	SD15	D19	GND
C20	NC	D20	GND

3.18 Floppy Connector

JUKI-C400 board equipped with a 34-pin daisy-chain driver connector cable.

• FDD1: Floppy Connector

PIN	DESCRIPTION	PIN	DESCRIPTION
1	GROUND	2	RWC0-
3	GROUND	4	NC
5	GROUND	6	RWC1-
7	GROUND	8	INDEX-
9	GROUND	10	MO-A
11	GROUND	12	DS-B
13	GROUND	14	DS-A
15	GROUND	16	МО-В
17	GROUND	18	DIR-
19	GROUND	20	STEP-
21	GROUND	22	WD-
23	GROUND	24	WGATE-
25	GROUND	26	TRK0-
27	GROUND	28	WP-
29	GROUND	30	RDATA-
31	GROUND	32	HEAD-
33	GROUND	34	DSKCHG-

3.19 Compact Flash Storage Card Socket

The JUKI-C400 configures Compact Flash Storage Card in IDE Mode. This type II Socket is compatible

with IBM Micro Drive.

CF1: Compact Flash Storage Card Socket pin assignment

PIN	DESCRIPTION	PIN	DESCRIPTION
1	GROUND	26	PULL DOWN
2	D3	27	D11
3	D4	28	D12
4	D5	29	D13
5	D6	30	D14
6	D7	31	D15
7	CS1#	32	CS3#
8	N/C	33	N/C
9	GROUND	34	IOR#
10	N/C	35	IOW#
11	N/C	36	+5V
12	N/C	37	IRQ15
13	VCC	38	VCC
14	N/C	39	MASTER/SLAVE
15	N/C	40	N/C
16	N/C	41	RESET#
17	N/C	42	IORDY
18	A2	43	N/C
19	A1	44	+5V
20	A0	45	ACTIVE#
21	D0	46	PDIAG#
22	D1	47	D8
23	D2	48	D9
24	N/C	49	D10
25	PULL DOWN	50	GROUND

Chapter 4 AMI BIOS Setup

4.1 Getting Start

This manual discusses AMI's Setup program built into the ROM BIOS. The Setup program allows users to modify the basic system configuration. This special information is then stored in battery-backed RAM so that it retains the Setup information when the power is turned off.

4.2 Starting Setup

The AMI BIOS is immediately activated when you first power on the computer. The BIOS reads the system information contained in the CMOS and begins the process of checking out the system and configuring it. When it finishes, the BIOS will seek an operating system on one of the disks and then launch and turn control over to the operating system.

While the BIOS is in control, the Setup program can be activated in one of two ways:

- (1) By pressing immediately after switching the system on
- (2) By pressing the key when the following message appears briefly at the bottom of the screen during the post.

Press DEL to enter SETUP.

If the message disappears before you respond and you still wish to enter Setup, restart the system to try again by turning it OFF then ON or pressing the "RESET" button on the system case. You may also restart by simultaneously pressing <Ctrl>, <Alt>, and <Delete> keys. If you do not press the keys at the correct time and the system does not boot, an error message will be displayed and you will again be asked to...

PRESS F2 TO CONTINUE, DEL TO ENTER SETUP

4.3 Using Setup

In general, you use the arrow keys to highlight items, press <Enter> to select, use the PageUp and PageDown keys to change entries, press <F1> for help and press <Esc> to quit. The following table provides more detail about how to navigate in the Setup program using the keyboard.

Up arrow	Move to previous item		
Down arrow	Move to next item		
Left arrow	Move to the item in the left hand		
Right arrow	Move to the item in the right hand		
Esc key	Main Menu Quit and not save changes into CMOS Status Page Setup Menu and Option Page Setup Menu Exit current page and return to Main Menu		
PgUp key	Increase the numeric value or make changes		
PgDn key	Decrease the numeric value or make changes		
+ key	Increase the numeric value or make changes		
- key	Decrease the numeric value or make changes		
F1 key	General help, only for Status Page Setup Menu and Option Page Setup Menu		
F2 /F3 key	Change color from total 16 colors. F2 to select color forward, (Shift) F2 to select color backward		
F4 key	Reserved		
F5 key	Reserved		

F6 key	Reserved
F7 key	Reserved
F8 key	Reserved
F9 key	Reserved
F10 key	Save all the CMOS changes, only for Main Menu

4.4 Getting Help

Press F1 to pop up a small help window that describes the appropriate keys to use and the possible selections for the highlighted item. To exit the Help Window press <Esc> or the F1 key again.

If, after making and saving system changes with Setup, you discover that your computer no longer is able to boot, the AMI BIOS supports an override to the CMOS settings which resets your system to its defaults.

The best advice is to only alter settings which you thoroughly understand. To this end, we strongly recommend that you avoid making any changes to the chipset defaults. These defaults have been carefully chosen by both AMI and your systems manufacturer to provide the absolute maximum performance and reliability. Even a seemingly small change to the chipset setup has the potential for causing you to use the override.

4.5 Main Menu

Once you enter the AMIBIOS™ CMOS Setup Utility, the Main Menu will appear on the screen. The Main Menu allows you to select from several setup functions and two exit choices. Use the arrow keys to select among the items and press <Enter> to accept and enter the sub-menu.

Note that a brief description of each highlighted selection appears at the bottom of the screen.

The main menu includes the following main setup categories. Recall that some systems may not include all entries.

Standard CMOS Setup

Use this menu for basic system configuration.

Advanced CMOS Setup

Use this menu to set the Advanced Features available on your system.

Advanced Chipset Setup

Use this menu to change the values in the chipset registers and optimize your system's performance.

Power Management Setup

When Disabled, SMI will not be initialized, and complete power management functionality is removed until this option is set to Enabled.

PCI / Plug and Play Setup

This entry appears if your system supports PnP / PCI.

Peripheral Setup

Use this menu to specify your settings for integrated peripherals.

Hardware Monitor Setup

Use this menu to monitor your hardware.

Auto-detect Hard Disks

Use this menu to specify your settings for hard disks control.

Change Supervisor Password

Use this menu to set User and Supervisor Passwords.

Auto Configuration with Optimal Settings

Use this menu to load the BIOS default values that are factory settings for optimal performance system operations. While AMI has designed the custom BIOS to maximize performance, the factory has the right to change these defaults to meet their needs.

Auto Configuration with Fail-Safe Settings

Use this menu to load the BIOS default values for the minimal/stable performance for your system to operate.

Save Settings and Exit

Save CMOS value changes to CMOS and exit setup.

Exit Without Saving

Abandon all CMOS value changes and exit setup.

4.6 Standard CMOS Setup

The items in Standard CMOS Setup Menu are divided into 10 categories. Each category includes no, one or more than one setup items. Use the arrow keys to highlight the item and then use the <PgUp> or <PgDn> keys to select the value you want in each item.

```
AMIBIOS SETUP - STANDARD CMOS SETUP
           (C)2001 American Megatrends, Inc. All Rights Reserved
Date (mm/dd/yyyy): Mon May 05,2003
Time (hh/mm/ss) : 09:54:58
                                                        Base Memory: 0 KB
                                                        Extd Memory: 0 MB
Floppy Drive A: 1.44 MB 3½
Floppy Drive B: Not Installed
                                                        LBA Blk PIO 32Bit
                     Size Cyln Head WPcom Sec Mode Mode Mode
            Type
Pri Master: Auto
Pri Slave : Auto
                                                                       0n
Sec Master: Auto
                                                                       On
Sec Slave : Auto
                                                                       0n
Boot Sector Virus Protection Disabled
Month: Jan - Dec
                                                         ESC:Exit 11:Sel
 Dav: 01 - 31
                                                         PgUp/PgDn: Modify
 Year: 1980 - 2099
                                                         F1:Help F2/F3:Color
```

• Main Menu Selections

Item	Options	Description
Date	MM DD YYYY	Set the system
		date.
Time	HH: MM: SS	Set the system time
IDE	Options are in its sub	Press <enter> to</enter>
Primary Master	menu	enter the sub menu
	(described in Table 3)	of detailed options
IDE	Options are in its sub	Press <enter> to</enter>
Primary Slave	menu	enter the sub menu
	(described in Table 3)	of detailed options
IDE	Options are in its sub	Press < Enter > to
Secondary Master	menu	enter the sub menu
	(described in Table 3)	of detailed options
IDE	Options are in its sub	Press < Enter > to
Secondary Master	menu	enter the sub menu
	(described in Table 3)	of detailed options
Drive A	None	Select the type of
Drive B	360K, 5.25 in	floppy disk drive
	1.2M, 5.25 in	installed in your
	720K, 3.5 in	system
	1.44M, 3.5 in	
	2.88M, 3.5 in	
Halt On	All Errors	Select the situation
	No Errors	in which you want
	All, but Keyboard	the BIOS to stop the
	All, but Diskette	POST process and
	All, but Disk/Key	notify you
Base Memory	N/A	Displays the amount
		of conventional
		memory detected
		during boot up
Extended Memory	N/A	Displays the amount
		of extended memory
		detected during
		boot up

4.7 Advanced CMOS Setup

This section allows you to configure your system for basic operation. You have the opportunity to select the system's default speed, boot-up sequence, keyboard operation, shadowing and security.

Quick Boot

When set to enable, DRAM testing function will disable. Warning

1st /2nd /3rd Boot Device

This option sets the type of device for the first boot drives that the AMIBIOS attempts to boot from after AMIBIOS POST completes. The settings are Disabled, IDE-0, IDE-1, IDE-2, IDE-3, Floppy, ARMD-FDD, ARMD-HDD, CDROM, SCSI.

Try Other Boot Devices

Set this option to Yes to instruct AMIBIOS to attempt to boot from any other drive in the system if it cannot find a boot drive among the drives specified in the 1st Boot Device, 2nd Boot Device, 3rd Boot Device, 4th Boot Device options. The settings are Yes or No.

Floppy Access Control

This option specifies the read/write access that is set when booting from a floppy drive. The settings are Read/Write or Read-Only.

Hard Disk Access Control

This option specifies the read/write access that is set when booting from a hard disk drive. The settings are Read/Write or Read-Only.

S.M.A.R.T. for Hard Disks

Self-Monitoring, Analysis and Reporting Technology. This option can help BIOS to warn the user of the possible device failure and give user a chance to back up the device before actual failure happens. The settings are Disabled, Enabled.

Boot Up Num-Lock

When On, this option turns off Num Lock when the system is powered on so the end user can use the arrow keys on both the numeric keypad and the keyboard.

Floppy Drive Swap

Set this option to Enabled to permit drives A: and B: to be swapped. The settings are Enabled or Disabled.

Floppy Drive Seek

Set this option to Enabled to specify that floppy drives A: will perform a Seek operation at system boot. The settings are Enabled or Disabled.

PS/2 Mouse Support

When this option is enabled, BIOS support a PS/2- type mouse.

System Keyboard

This option does not specify if a keyboard is attached to the computer. Rather, it specifies if error messages are displayed if a keyboard is not

attached. This option permits you to configure workstation with no keyboard. The settings are Absent, Present.

Primary Display

Select this option to configure the type of monitor attached to the computer. The settings are Monochrome, Color 40x25,Color 80x25,VGA/PGA/EGA ,or Not Install.

Password Check

This option enables the password check option every time the system boots or the end user runs Setup. If always is chosen a user password prompt appears every time the computer is tuned on. If setup is chosen, the password prompt appears if BIOS is executed.

Boot To OS/2

Set this option to Enabled if running OS/2 operating system and using more than 64MB of system memory on the motherboard. The settings are YES or NO.

Wait For 'F1' If Error

If this option is enabled, AMIBIOS waits for the end user to press <F1> before continuing. If this option is disabled, AMIBIOS continues the boot process without waiting for <F1> to be pressed. The settings are Disabled or Enabled.

Hit 'DEL' Message Display

Disabling this option prevents "Hit if you want to run Setup" from appearing when the system boots. The settings are Disabled or Enabled.

Internal Cache

The option enabled or disabled the internal cache memory in the processor.

External Cache

The option enables secondary cache memory. If Enabled is selected, external cache memory is enabled. If disabled is select, external cache

System BIOS Cacheable

When this option is set to enabled, the System ROM area from F0000-FFFFF is copied (shadowed) to RAM for faster execution.

C000,32k Shadow

When this option is set to enabled, the Video ROM area from C0000-C7FFF is copied (shadowed) to RAM for faster execution.

Disabled :The contents of the video ROM are not copied to RAM.

Cached :The contents of the video ROM area from C0000h - C7FFFh are copied from ROM to RAM and can be written to or read from cache memory. Enabled :The contents of the video ROM area from C0000h - C7FFFh are copied (shadowed) from ROM to RAM for faster execution.

C800,16k Shadow

These options enable shadowing of the contents of the ROM area named in the option title. The settings are Enable Disable, Cached. The ROM area that is not used by ISA adapter cards will be allocated to PCI adapter cards.000,32k Shadow

CC00,16k Shadow

These options enable shadowing of the contents of the ROM area named in the option title. The settings are Enable Disable, Cached. The ROM area that is not used by ISA adapter cards will be allocated to PCI adapter cards.800,16k Shadow

D000,16k Shadow

These options enable shadowing of the contents of the ROM area named in the option title. The settings are Enable Disable, Cached. The ROM area that is not used by ISA adapter cards will be allocated to PCI adapter cards.C00,16k Shadow

D400,16k Shadow

These options enable shadowing of the contents of the ROM area named in the option title. The settings are Enable Disable, Cached. The ROM area that is not used by ISA adapter cards will be allocated to PCI

D800,16k Shadow

These options enable shadowing of the contents of the ROM area named in the option title. The settings are Enable Disable, Cached. The ROM area that is not used by ISA adapter cards will be allocated to PCI adapter cards.400,16k Shadow

DC00,16k Shadow

These options enable shadowing of the contents of the ROM area named in the option title. The settings are Enable Disable, Cached. ISA adapter cards will be allocated to PCI adapter cards.800,16k Shadow

4.8 Advanced Chipset Setup

This section allows you to configure the system based on the specific features of the installed chipset. This chipset manages bus speeds and access to system memory resources, such as DRAM and the external cache. It also coordinates communications between the conventional ISA bus and the PCI bus. It must be stated that these items should never need to be altered. The default settings have been chosen because they provide the best operating conditions for your system.

DRAM Frequency

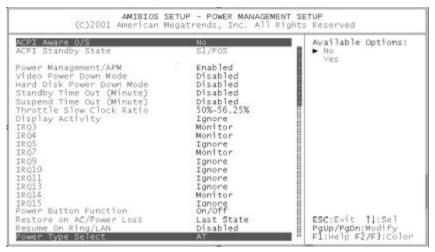
This setting decided by Memory frequency.

SDRAM CAS# Latency

This setting decided by Memory CAS latency

AGP Aperture Size

Select the size of AGP aperture. The aperture is a portion of the PCI Memory address space. Host cycles that hit the aperture range are forwarded to the AGP without any translation


USB Controller

Select enable if your system contains a USB controller and you have USB Peripherals.

USB Device Legacy support

Enable or Disable for USB device legacy support.

4.9 Power Management Setup

ACPI Aware O/S

This feature is switch of ACPI function. Configuration options: [No] [Yes]

ACPI Standby State

This feature is switch of STR (S3) or POS (S1) function. Configuration options : [S3/STR] [S1/POS]

Power Management/APM

When Disabled, SMI will not be initialized, and complete power management functionality is removed until this option is set to Enabled.

Video Power Down Mode

Video power down when system in Suspend mode. Video power down when system in Standby mode.

Hard Disk Power Down Mode

Heard Disk power down when system in Suspend mode. Heard Disk power down when system in Standby mode.

Suspend Time Out

If no activity occurs during this time period, the BIOS will place the system into the suspend low power state. The "Standby Time Out" period must expire first (if enabled) before this time out period begins.

IRQ3,4,5,7,9,10,11,13,14,15

As Individual IRQ Wake Up Events.

Power Button Function

On/Off allows the system to switch off immediately the power button is pressed. Suspend allows the system to Suspend immediately the power button is pressed.

Resume on Ring/LAN

Allow the system to wake up in respnse to a Ring Indicator signal from external modem. Wake up on LAN gives you the ability to remotely boot a PC from across a network even if it has been powered down.

Resume On RTC Alarm

When this option is set enabled, system will according to you set time then wakeup from soft off mode.

Power Type Select

This option is select Power Type for AT or ATX

4.10 PCI / Plug and Play Setup

Plug and Play Aware O/S

If enable, BIOS will configure only PnP ISA boot devices(i.e. all PnP ISA cards which has boot flag set). And PnP aware OS will configure all other devices. If disable, BIOS will configure all devices.

Clear NVRAM

When this option is set to Yes, system can auto clear NVRAM. The settings are No, Yes.

On Chip VGA Frame Buffer Size

This option is select frame buffer size (2~32MB) for VGA

PCI Latency Timer (PCI Clocks)

This option specifies the latency timings(in PCI clocks) for PCI devices installed in the PCI expansion slots. The settings are 32, 64, 96, 128, 160, 192, 224, or 248.

Boot Screen Select

This option is select Boot Screen from CRT or LCD. Select CRT+LCD is Boot from CRT and LCD.

LCD Panel Type

This option is select LCD Panel type.

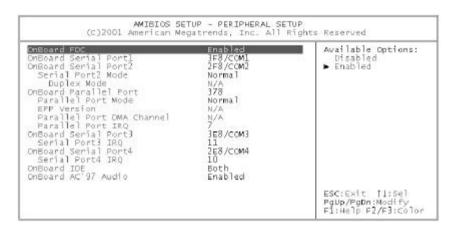
Allocate IRQ to PCI VGA

Set this option to Yes to allocate an IRQ to the VGA device on the PCI bus. The settings are Yes or No.

PCI Slot1 / Slot2 / Slot3 / Slot4 IRQ Priority

The option specify the IRQ priority for PCI device installed in the PCI expansion slot. The settings are Auto, (IRQ) 3, 4, 5, 7, 9, 10, and 11, in priority order.

DMA Channel 0, 1, 3, 5, 6, 7


The option allow you to specify the bus type used by each DMA channel. The settings are PnP or ISA/EISA.

IRQ3 ,4 ,5 ,7 , 9, 10, 11, 14, 15

The option specify the bus that the specified IRQ line is used on. The option allow you to reserve IRQs for legacy ISA adapter cards. The option determine if AMIBIOS should remove an IRQ from the pool of available IRQs passed to devices that are configurable by the system BIOS. The available IRQ pool is determined by reading the ESCD NVRAM. If more IRQs must be removed from the pool, the end user can use the option to reserve the IRQ by assigning an ISA/EISA setting to it. Onboard I/O is configured by AMIBIOS. All IRQs used by onboard I/O are configured as PCI/PnP.

4.11 Peripheral Setup

The Peripheral Setup allows you to configure you system to most effectively save energy while operating in a manner consistent with your own style of computer use.

OnBoard Serial Port 1/Port 2/Port 3/Port4

This option specifies the base I/O port address of serial port 1.The settings are Auto (AMIBIOS automatically determines the correct base I/O port address), Disabled, 3F8h, 2F8h, 2E8h, or 3E8h.

Serial Port4 Mode

This option specifies the IR active pulse or inverting clock of serial port B.

IR Pin Select

The SIN/SOUT pin of Serial Port 3 function or IRRX/IRTX pin if IR function in normal condition.

On Board Parallel Port

This option specifies the base I/O port address of parallel port on the motherboard. The settings are Disabled, 378h, 278h, or 3BCh.

Parallel Port Mode

This option specifies the parallel port mode. The settings are Normal, Bi-Dir, EPP, ECP. Normal :The normal parallel port mode is used. Bi-Dir :Use this setting to support bidirectional transfers on the parallel port.

- EPP :The parallel port can be used with devices that adhere to the Enhanced Parallel Port(EPP) specification. EPP uses the existing parallel port signals to provide asymmetric bidirectional data transfer driven by the host device.
- ECP :The parallel port can be used with devices that adhere to the Entended Capabilities Port(ECP) specification. ECP uses the DMA protocol to achieve data transfer rates up to 2.5 Megabits persecond. ECP providessymmetric bidirectional communication.

EPP Version

EPP data or address read cycle 1.9 or 1.7

Parallel Port DMA Channel

This option is only available if the setting for the Parallel Port Mode option is ECP. This option sets the DMA channel used by the parallel port. The settings are DMA Channel 0, 1, or 3.

Parallel Port IRQ

This option specifies the IRQ used by the parallel port. The settings are Auto, (IRQ)5, (IRQ)7.

On Board IDE

This option is select IDE Function Enable or Disable

On Board AC'97 Audio

Enable or Disable AC'97 Audio Function

4.12 Hardware Monitor Setup

4.13 Change Supervisor Password

You can set either supervisor or user password, or both of them. The differences between are:

Supervisor Password:

can enter and change the options of the setup menus.

User Password:

just can only enter but do not have the right to change the options of the setup menus. When you select this function, the following message will appear at the center of the screen to assist you in creating a password.

Enter Password:

Type the password, up to eight characters in length, and press <Enter>. The password typed now will clear any previously entered password from CMOS memory. You will be asked to confirm the password.

Type the password again and press <Enter>. You may also press <Esc> to abort the selection and not enter a password.

Password Disabled:

To disable a password, just press <Enter> when you are prompted to enter the password. A message will confirm the password will be disabled. Once the password is disabled, the system will boot and you can enter Setup freely.

When a password has been enabled, you will be prompted to enter it every time you try to enter Setup. This prevents an unauthorized person from changing any part of your system configuration.

Additionally, when a password is enabled, you can also require the BIOS to request a password every time your system is rebooted. This would prevent unauthorized use of your computer.

You determine when the password is required within the BIOS Features Setup Menu and its Security option (see Section 3). If the Security option is set to password will be required both at boot and at entry to Setup. If set to "Setup", prompting only occurs when trying to enter Setup.

This chapter discusses the Setup program built into the BIOS. which allows users to configure the system. This configuration is then stored in battery-backed CMOS RAM so that Setup information is retained whilst the power is off.

Appendix A. Watchdog Timer

The Watchdog Timer is a device to ensure that standalone systems can always recover from abnormal conditions that cause the system to crash. These conditions may result from an external EMI or a software bug. When the system stops working, hardware on the board will perform hardware reset (cold boot) to bring the system back to a known state. Three I/O ports control the operation of Watchdog Timer.

443 (hex)	Write	Set Watchdog Time period
443 (hex)	Read	Enable the Watchdog Timer.
043/843 (hex)	Read	Disable the Watchdog Timer.

Prior to enable the Watchdog Timer, user has to set the time-out period. The resolution of the timer is 1 second and the range of the timer is from 1 sec to 255 sec. You need to send the time-out value to the I/O port – 443H, and then enable it by reading data from the same I/O port – 443H. This will activate the timer that will eventually time out and reset the CPU board. To ensure that this reset condition won't occur, the Watchdog Timer must be periodically refreshed by reading the same I/O port 443H. This must be done within the time-out period that is set by the software, please refer to the example program. Finally, we have to disable the Watchdog timer by reading the I/O port -- 843H or 043H. Otherwise the system could reset unconditionally.

A tolerance of at least 5% must be maintained to avoid unknown routines in the operating system (DOS), such as disk I/O that can be very time-consuming. For example, if the time-out period has been set to 10 seconds, the I/O port 443H must be read within 7 seconds.

Example assembly program:

 $TIMER_PORT = 443H$

 $TIMER_START = 443H$

TIMER STOP = 843H

;;INITIAL TIMER COUNTER

MOV DX, TIMER PORT

MOV AL, 8 ::8 seconds

OUT DX, AL

MOV DX, TIMER START

IN AL, DX. ;;START COUNTER W LOOP:

MOV DX, TIMER STOP

IN AL, DX

MOV DX, TIMER_START

IN AL, DX ;; RESTART COUNTER

;;ADD YOUR APPLICATION HERE

CMP EXIT_AP, 0

JNE W_LOOP

MOV DX, TIMER_STOP

IN AL, DX

;;EXIT AP

Appendix B. I/O Address Map

• I/O Address Map

I/O Address Map	Description
000-01F	DMA Controller #1
020-021	Interrupt Controller # 1, Master
040-05F	System Timer
060-06F	Standard 101/102 keyboard Controller
070-07F	Real time Clock, NMI Controller
080-0BF	DMA Page Register
0A0-0BF	Interrupt Controller # 2
0C0-0DF	DMA Controller # 2
0F0-0F0	Clear Math Coprocessor Busy
0F1-0F1	Reset Math Coprocessor
0F8-OFF	Math Coprocessor
170-1F7	BUS Master PCI IDE Controller
278-27F	Parallel Printer Port 2
2E8-2EF	Serial Port 4
2F8-2FF	Serial Port 2
376-376	BUS Master PCI IDE Controller
378-37F	Parallel Printer Port 1
3B0-3DF	AGP Graphic Adapter
3E8-3EF	Serial Port 3
3F0-3F7	Floppy Disk Controller
3F8-3FF	Serial Port 1
443	Watchdog timer enable
480-48F	PCI BUS
843/043	Watchdog timer disable

1 st MB Memory Address Map

Memory address	Description
00000-9FFFF	SYSTEM MEMORY
A0000-BFFFF	VGA BUFFER
C0000-CFFFF	VGA BIOS
E0000-FFFFF	SYSTEM BIOS
100000	EXTEND MEMORY

IRQ Mapping Chart

IRQ0	System Timer	IRQ8	RTC CMOS clock
IRQ1	Keyboard	IRQ9	ACPI STEERING
IRQ2	IRQ Controller	IRQ10	COM4
IRQ3	COM2	IRQ11	COM3
IRQ4	COM1	IRQ12	PS/2 mouse
IRQ5	USB	IRQ13	FPU
IRQ6	FDC	IRQ14	Primary IDE
IRQ7	Printer	IRQ15	Secondary IDE

DMA Channel Assignment

Channel	Function
0	Available
1	Available
2	Floppy disk
3	Available
4	Cascade for DMA controller 1
5	Available
6	Available
7	Available

Appendix C.

How to use Wake-Up Function

JUKI-C400 provides two kinds of Wake-up function. This page describes how to use Modem Wake-Up and LAN Wake-Up functions. Wake-Up function only works with ATX power supply.

Wake-Up On Modem(Ring):

You must set the option **Wake-Up On LAN/Ring** of CMOS SETUP to be enabled. ATX power supply will be switched on when there is a ring signal detected on pin "RI" of serial port.

Wake-Up On LAN:

When your computer is in power-down status, you can see LAN Link/Active LED is flashing. This status indicates that the LAN chip has entered standby mode and waits for Wake-Up signal. You can use other computers to wake up yours by sending ID to it.

<u>ID</u>: ID is the MAC address of your system LAN. Every LAN chip has a factory-set ID, which you can find it from network information in WINDOWS

ID's format is xxxxxxxxxxxx **Example ID**: 009027388320

Appendix D. Digital I/O

One characteristic of digital circuit is its fast response to high or low signal. This kind of response is highly needed for harsh and critical industrial operating environment. That's why we design 4-bit digital inputs and 4-bit digital outputs on the JUKI-C400.

There are two kinds of signals (Input and Output) used by the Digital I/O function. These signals are used to control external devices that need On/Off circuit or TTL devices. When one of the signals has been selected, The user can read or write data to the system through the Digital I/O function.

A BIOS function call (INT 15H) is used to control the Watchdog Timer:

INT 15H:

```
AH – 6FH

Sub-function:
AL – 8 : Set the Digital port as INPUT
AL : Digital I/O input value
```

Example program:

```
MOV AX, 6F08H ;setting the Digital port is input INT 15H ;
```

AL low byte = value

```
AH – 6FH

Sub-function:
AL – 9 : Set the Digital port as OUTPUT
BL : Digital I/O output value
```

Example program:

```
MOVAX, 6F09H;setting the Digital port is outputMOVBL, 09H;Digital value is 09HINT15H;
```

Digital Output is 1001b

Appendix E.

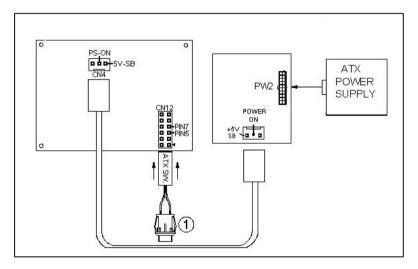
Signal mapping of LVDS (18bit LVDS mapping table)

(R0)		(B2)	
(R1)		(B3)	
(R2)	1 st LVDS	(B4)	1 st LVDS
(R3)	(data0 output -)	(B5)	(data2 output -)
(R4)	(data0 output +)	HSYNC	(data2 output +)
(R5)		VSYNC	
(G0)		DE	
(G1)			
(G2)			-4
(G3)	1 st LVDS		1 st LVDS
(G4)	(data1 output -)	DCLK	(clock output -)
(G5)	(data1 output +)		(clock output +)
(B0)			
(B1)			

(36bit LVDS mapping table)

(RA0) (RA1) (RA2) (RA3) (RA4)	1 st LVDS (data0 output -) (data0 output +)	(BA2) (BA3) (BA4) (BA5) HSYNC	1 st LVDS (data2 output -) (data2 output +)
(RA5) (GA0)		VSYNC DE	
(GA1) (GA2) (GA3) (GA4) (GA5) (BA0) (BA1)	1 st LVDS (data1 output -) (data1 output +)	DCLKA	1 st LVDS (clock output -) (clock output +)

(RB0)		(BB2)	
(RB1)		(BB3)	
(RB2)	2 nd LVDS	(BB4)	2 nd LVDS
(RB3)	(data0 output -)	(BB5)	(data2 output -)
(RB4)	(data0 output +)	NC	(data2 output +)
(RB5)		NC	
(GB0)		NC	
(GB1)			
(GB1) (GB2)			
,	2 nd LVDS		2 nd LVDS
(GB2)	(data1 output -)	DCLKB	(clock output -)
(GB2) (GB3)		DCLKB	
(GB2) (GB3) (GB4)	(data1 output -)	DCLKB	(clock output -)


Appendix F. ATX Power Supply

The following notes show how to connect ATX Power Supply to the backplanes and / or the ISBC card.

For backplanes with ATX Connector

- Please, disconnect the AC cord of the Power Supply from the AC source to prevent sudden electric surge to the board.
- Please, check the type of your CPU board. All CPU board listed on the next page support ATX power supply but has two types of power switch connection:

JUKI-C400 (through Power Button & GND):

Connect the ATX power button switch to the CN12 (power button). And connect the power cable from Backplane to CN4 of CPU card.

If you want to turn ON the system, just press the button once. And if you want to turn off the power supply, please press the ATX power switch button for about 4 seconds.